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Abstract. A basis-independent criterion for the classification of ineducible p u p  representa- 
tions, into potentially-real, pseudo-reaJ and essentially-complex representations, is @en for an 
arbivary group which may-also possess infiniredimensional rep?esentations. These considera- 
tions are applied, in particular. to the finite- and infinitedimensional representations OCio, c) of 
the orthochronous proper Lorentz group SO(3.1) and it is shown that the irreps wtdch axe nei- 
ther unitary DOI pseudo-unitary are essentiallycomplex. Further, among the unitary and pseudo- 
unitary irreps of SO(3, I), those irreps with a half-odd-integer jo  are shown to be pseudo-real, 
while the others with an integer j o  (including zero) we potentially-real. 

1. Introduction 

Based on their ‘reality’, the representations of a group are divided into three categories. A 
representation D of a group i? is of the first kind, or potentially-real, if it is equivalent to a real 
representation. It is of the second kind, or pseudo-real, if it cannot be brought to a real form, 
but is still equivalent to the complex-conjugate representation D*. If D is not equivalent to 
D*, then the representation is of the third kind, or essentially-complex. Although this kind of 
classification of group representations has been considered in~.the literature (Wigner 1959, 
Hamermesh 1964, Lomont 1959) for finite:dimensional representations only, it certainly 
also provides a useful sorting of infinite-dimensional representations. It is the purpose of 
this paper to examine how such a classification may be achieved specifically in the case of 
infinite-dimensional irreducible representations (irrepsj’of an arbitrary group. The results 
obtained here not only cover the case of infinite-dimensional irreps, but also yield the 
corresponding results for the finite-dimensional case in a more exhaustive and invariant 
form. In fact, we observe that while the existing criterion (see, for example, Wigner 
(1959), or Hamermesh (1964)) for reality classification refers to the finite-dimensional 
unitary representations only, the criterion presented here is applicable to unitary as well 
as non-unitary irreps irrespective of their dimension. 

The determination of a matrix C which intertwines a given representation D of a group 
r with the complex-conjugate representation D* in the sense that 
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for every D(g) E D, g E r, is crucial to the reality classification of group representations. 
If such a matrix C exists and is invertible, then representation D belongs either to the first 
kind or to the second kind. Otherwise, it belongs to the third kind. Operator C has been 
called the time-reversal operator associated with matrix group D in the literature (Lomont 
1959). However, following Wigner (1959), who denotes this operator by C, we shall simply 
call it the C-matrix (associated with D) to avoid any possible misunderstanding. 

In section 1, we show that any non-zero C-matrix intertwining irreps D and D* is 
necessarily invertible. This observation simplifies the definition of a third-kind irrep. An 
irrep D is of the third kind if equation (1.1) can be satisfied only by C = 0. Further, we 
show that a (non-zero) C-matrix is unique except for a constant scalar factor and satisfies 
one and only one of the two invariant conditions CC' = &E. From these conditions, it 
follows that the existence of a  matrix^ C, which is expressible as C = P T - '  in terms of 
a suitable invertible matrix T, is a necessary and sufficient condition for an irrep to be 
potentially-real. However, the above criterion is not a useful practical check for potential- 
reality, especially in the infinite-dimensional case. Instead, we may use the following result 
proved in this section: the matrix T = (LYE + cu*C*), where a! is a complex number, if 
invertible, is a solution of C = T*T-' and hence transforms the irrep in question to a real 
form. We also discuss the problem of the existence of an inverse to matrix T and point out 
some special circumstances under which T possesses an inverse. Our discussion covers, in 
particular, the case of all the finite-dimensional and infinite-dimensional irreps of SO(3, 1) 
which is the main object of study in this paper. 

In section 3, we show that C = orA*-*G, where LY is an arbitrary complex number, G 
is the bilinear metric and A is the sesquilinear metric associated with an irrep D so that the 
existence of any two of C, G and A implies the existence of the other uniquely. 

In section 4, we explicitly determine the C-matrices associated with the irreps D(j0, c) 
of SO(3, 1) in the Gelfand-Naimark basis, thus providing a complete reality classification 
of all the irreps of SO(3,l). 

A V Gopala Rao et a1 

2. The C-matrix and the criterion for potential-reality of irreps 

Since our interest lies primarily with irreps of infinite dimension, we first review some 
related definitions and concepts. A matrix T is defined to be non-degenerate if no vector 
X # 0 exists such that T X  = 0. If T is a non-degenerate matrix and XI # X, are any 
two distinct vectors, then TXI  # TX, as otherwise TX1 -TX2 = T(X1 -Xz) = 0 would 
require XI = X,, which cannot be true in view of the non-degeneracy of T. Therefore, 
a linear transformation T VI + V2 from a vector space V, to another vector space V, is 
evidently one-to-one whenever T is non-degenerate. Here, we may also recall that for a 
linear transformation T VI + Vz to be invertible, it must provide a one-to-one mapping 
of 5 onto VI. 

Next, we note that an infinitedimensional representation g -+ D(g) of a group r 
acting in a space B is defined to be irreducible (Gelfand 'et ni 1963, Gelfand et a1 1966) 
if B has no proper subspaces which are invariant under all the operators D(g) and any 
bounded linear operator K which commutes with all the operators D(g) is a multiple of 
the unit operator E. The absence of proper invariant subspaces in B relative to D(g) is 
referred to as the subspace-irreducibility of D(g). The second property of D(g) relating 
to the commuting operator K mentioned above is referred to as the operator-irreducibility 
of D(g). For finitedimensional representations, as is well known, operator irreducibility 
is equivalent to subspace irreducibility, which, however, is not true of infinite-dimensional 
irreps in general (see Gelfand et a1 (1966)). 
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A matrix T is said to intertwine two representations DI and Dz of a grcup r if 
TD](g) = D&)T for all g E r. Further, when the representations DI and Dz are 
subspace irreducible, it follows, as a consequence of the genemlized Schur lemma (Coleman 
1968, Mackey 1978), that any matrix T # 0 that intertwines the (subspace irreducible) 
representations Dl and DZ of r is necessarily invertible, so that D1 and Dz are actually 
equivalent. 

Recall that, by definition, a C-matrix intertwines a representation D of a group r with the 
complex conjugate representation D* (see equation (1.1)). When D and D* are irreduciblet, 
every matrix C # 0 that intertwines D with D* is necessarily invertible by the Schur lemma. 
Thus, if D is an irrep of the third kind, then C = 0 is the only matrix that can 'intertwine' 
D with D'. 

Suppose a non-zero matrix C intertwines the irreps D and D*. Then, D can be of the 
first or second kind only. Moreover, such a matrix C is necessarily invertible and unique 
to within a scalar factor. To see this, observe that if CI and CZ are any two non-zero 
C-matrices which intertwine the equivalent irreps D and D*, then we must have 

CID(g)C;' = D*(g) = CzD(g)C;' 

so that 

D(g)C;'Cz = C;'CzD(g). 

Since D is operator irreducible, it follows from the Schur lemma that C;'& = cuE, or 
CZ = aCI ,  where 01 is a scalar, thus proving our assertion. In addition to the C-matrix C, 
we introduce later in this paper three more matrices T, G, and A, and we emphasize that we 
have assumed that the matrices C, T, G and A, together with their inverses, are associative 
among themselves and with the matrices D(g) of the irrep D. Substituting for D*(g) from 
equation (1.1) in the complex conjugate of equation (l.l), we get 

D(g)C* = C*D*(g) = C"CD(g)C-' 

which gives 

D(g)C*C = C*CD(g). 

Since D is irreducible, this implies that 

C C  = BE (2.2) 

where B is a scalar. Taking the complex conjugate of the above equation, we obtain 
CC' = B'E, so that C* = B'C-'. Using this in equation (2.2). we obtain 

B=B' (2.3) 

and, hence, 

CC" = C*C = BE = kIBIE. (2.4) 

t Here we wish to point out that throughout this paper. the terms 'irreducible representation' and 'imtp'. unless 
othewise stated, refer always to a representation which is both subspace and operator irreducible. 
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Since C is determined only up to a scalar factor, we may absorb 
it without loss of generality to satisfythe condition 

A V Gopaia Rao et a1 

into C and redefine 

CC' = C'C = *E. (2.5) 

Such a C-matrix is evidently determined only up to an arbitrary phase factor exp(ip), 
where p is a real number. Note that a C-matrix which satisfies CC* = E cannot be made 
to satisfy CC" = -E and vice versa, by multiplying it by a phase factor which is the only 
indeterminacy left in C. Hence, it follows that the C-matrix can always be chosen so as to 
satisfy one (and only one) of the two conditions in equation (2.5). Further, the conditions 
given by equation (2.5) are easily seen to be invariant under a change of basis in the carrier 
space of the irrep D. Let D(g) + D'(g) = S-'D(g)S under a change of basis. Writing 
D(g) = SD'(g)S-' in equation (1.1) and rearranging, we obtain 

C'D'(g) = D'*(g)C' (2.6) 

where we have defined 

C' 5z s*-'cs (2.7) 

and such a C' satisfies CC'* = ?=E again, thus proving our assertion. Therefore, the totality 
of irreps of the first and second kind may be partitioned into two mutually-exclusive sets 
in an invariant manner depending on whether the associated C-matrices satisfy CC" = E 
or CC' = -E. We may also note that equation (2.7) is, incidentally, the rule by which the 
C-matrix transforms under a change of basis. 

Consider an irrep D of the first kind. Then, by definition, a similarity transformation T 
exists such that T-'D(g)T is real. Then, 

T-'D(g)T = (T-'D(g)T)* = T*-'D*(g)T* ( 2 . 8 ~ )  

so that 

T'T-'D(g) = D*(g)T'T-'. (2.86) 

Comparing this with equation (1.1) and taking into account the 'uniqueness' of C, we obtain 

to within an arbitrary phase factor. This C evidently satisfies CC* = E only and, hence, 
it follows that the existence of a C-matrix satisfying CC" = E is a similarity-invariant 
necessary condition for an irrep to be potentially-real. 

On the other hand, an irrep D whose C-matrix satisfies CC* = -E cannot possess a T 
which sends it to a real form since otherwise such a T would generate a C through equation 
(2.9) which satisfies CC* = E. Therefore, the existence of a C-matrix satisfying the 
condition Cc' = -E is a similarity-invariant sufficient condition for an irrep to be pseudo- 
real. These results also show that the existence of a C-matrix expressible as C = T*T-' is 
both necessary and sufficient for an irrep to be potentially-real. It must be observed here 
that the above results are true of both finite and infinitedimensional irreps. 
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We now examine the conditions under which a given C-matrix may be expressed as 
C = T*T-'. Such a C-matrix evidently satisfies CC* = E. Unlike the case of f in i t s  
dimensional matrices, we do not know how to express the inverse T-' of an infinite- 
dimensional matrix explicitly as a function of the elements of T. Therefore, we rewrite 
equation (2.9) as 

C T = P  (2.10) 

where we must remember that C satisfies CC' = E. However, we must be careful because, 
while equation (2.9) admits only invertible solutions T, related equation (2.10) also admits 
degenerate solutions (including T = 0). It is easily checked that the following one-parameter 
family of matrices 

T = CY +cy%* (2.11) 

where cy is an arbitrary complex number, satisfies equation (2.10). Further, such a T-matrix 
would be non-degenerate whenever (-cu/cy*) is not an eigenvalue of the C-matrir. To see 
this, observe that 

T X  = or[E + ([Y*/[Y)C*]X = 0 

would possess non-hivial solutions X if the equation 

C'X = -(ff/LY")X 

admits, in turn, solutions X # 0. In other words, a T given by equation (2.11) would be 
non-degenerate if, and only if, (-cy/cy*) is not an eigenvalue of the matrix C. 

If C is a finite-dimensional matrix, then, since there are only a finite number of 
eigenvalues for it, we can certainly find a complex number [Y such that (-cy/a,*) is not 
an eigenvalue of C. Therefore, in the finite-dimensional case, equation (2.11), with an 
appropriate choice of cy, gives a non-degenerate, and hence invertible, solution T of equation 
(2.10). We thus arrive at the following theorem. 

Theorem la. 
necessary and sufficient condition for a finite-dimensional irrep to be potentially-real. 

In view of the fact that C must satisfy only one of the invariant conditions C C  = E or 
CC' = -E, the above theorem implies, in turn, the following. 

Theorem Ib. The existence of a C-matrix satisfying CC' = -E is a similarity-invariant 
necessary and sufficient condition for a finite-dimensional irrep to be pseudo-real. 

In the infinite-dimensional case, on the other hand, to ensure that (-orla*) is not an 
eigenvalue of C, we must have a knowledge of the eigenvalue spectrum of C, which is not 
easy to obtain since all that we know about C is that it is a discrete infinite-dimensional 
matrix satisfying CC* = E. 'Even if we succeed in identifying a number (+U*) which is 
not an eigenvalue of C, it may not solve the problem every time since the T obtained using 
equation (2.11) could still be non-invertible, although non-degenerate. (This is so because 
a non-degenerate matrix T affects only a one-to-one mapping of the vectors of the carrier 
space B of the irrep D. In order that T be invertible, it must be a one-to-one mapping 

The existence of a C-matrix satisfying CC' = E is a similarity-invariant 
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of B onto 5.) However, the problem readily admits a solution in one special case, which 
covers the group under study, namely SO(3,l). Suppose C is real in some basis of B. 
Then, the (invariant) condition CC' = E becomes Cz = E in that basis. This would imply 
that every eigenvalue of C is either +1 or -1 and, hence, with any cy # &cy*, we obtain a 
non-degenerate matrix T from equation (2.1 1). Moreover, every such T = a + cy*C, where 
cy # =!=a*, is invertible. Assuming T-' = 6 + yC, we find that T-'T = lT1 = E, if 
fi  = cy/(cy2 -cy**) and y = -a*/(cy' -a**). We choose a = (1 - i)/Z and cast T and T-' 
in the convenient forms 

A V Gopala Rao et a1 

T = [(I - i)/21(E + iC) T-l = [ (I  + i)/2](E - iC). (2.12) 

Therefore, if the C-matrix is real in some basis, then in that basis, the conditions 

Cz = E e. Potential-reality and C2 = -E e. Pseudo-reality. 

Although generally not useful, the above conditions serve the purpose of this paper very 
well, because, as will be shown later in section 4, the invertible C-matrices associated with 
the first- and second-kind irreps of SO(3,l) are all real in the Gelfand-Naimark basis. 

3. The nature of the C-matrix associated with metric-preserving irreps 

When an irreducible matrix group D possessing a C-matrix C also possesses bilinear 
and sesquilinear metrics G and A, the three matrices C, G and A are interrelated as a 
consequence of the irreducibility of D. We must, however, note that all three matrices 
C, G and A need not exist simultaneously for an irreducible matrix group. In fact, there 
are irreducible matrix groups for which none of these three matrices exist while there are 
others which possess only one of them. For example, while the self-representation of the 
matrix group GL(2, C) does not possess any of these matrices, the self-representations of 
the groups GL(2, R), SL(2, C) and SU(n), when n > 2, possess only one of these matrices 
C, G and A, in that order. However, we prove, in the sequel, that the simultaneous existence 
of any two of C, G and A for an irrep implies the existence of the third uniquely, except\ 
for an arbitrary scalar factor. 

First, we recall some well known properties of the bilinear and sesquilinear metrics 
associated with irreducible matrix groups. A matrix group (or representation) D, with 
elements D(g), is said to preserve a bilinear metric if there exists a non-degenerate matrix 
G such that (see, for example, Gilmore (1974)) 

D(g)GD(g) = G VD(g) E D (3.1) 

where the tilde - denotes matrix transposition. Such a bilinear metric G associated with 
an irreducible matrix group D is determined uniquely up to a scalar factor and can either 
be symmetric or anti-symmetric only (Freudenthal and de Vries 1969). i.e. G = &G. By 
definition, a matrix group (or representation) D which preserves a symmetric bilinear metric 
is called orthogonal, whereas one which preserves an antisymmetric bilinear metric is called 
symplectic. Similarly, a matrix group (or representation) D, with elements D(g) is said to 
preserve a sesquilinear metric if there exists a non-degenerate matrix A such that 
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where Dt b is the hermitian conjugate of D. The sesquilinear metric A associated with 
an irreducible matrix group (or representation) D is also uniquely determined, except for a 
scalar factor, and can always be chosen to be hermitian (Freudenthal and de Vries 1969). 
A matrix group (or representation) which preserves a sesquilinear metric A is said to be 
unitary if A is positive-definite and pseudo-unitary if A is indefinite. 

We now prove that if any two of the matrices C, G and A exist for an irrep D, then the 
third certainly exists as a simple function of the other two. 

(i) Let an irrep D admit G and A. Then, from equations (3.1) and (3.2), we get 

D*(g)A*-' G = D*(g)[D*-' (g)A"-'D-' (g)][D(g)GD(g)] = A*-'GD(g). (3.3) 

Thus, 

C = aA*-'G (3.4) 

is the C-matrix associated with D where a is any scalar factor. 
(ii) On the other hand, if an irrep D admits A and C, then we have from equation (1.1) 

C = D*-'(g)CD(g), which, when multiplied on the left-hand side by A* from equation 
(3.2), yields 

A T  = [D(g)A*D*(g)][D*-'(g)CD(g)] = Q(g)A*CD(g). (3.5) 

Comparing this with equation (3.1), we see that 

G = P A T  (3.6) 

is the bilinear metric preserved by D, where P is a scalar. Since G = f G ,  in general, this 
implies that the matrix A*C is also symmetric or skew-symmetric accordingly. 

(iii) Finally, when an irrep D possesses C and G, we have, from equation (l.l), 
C = D*-'(g)CD(g), which, together with equation (3.1), implies that 

G*C*-' = [~(g)G"D"(g)][D"-'(g)C*-'D(g)] = D'(g)G*C*-'D(g). 

Thus, 

A = ).G*c*-' (3.7) 

is the sesquilinear metric preserved by D, where y is a scalar. With a suitable choice of y. 
this A can be made hermitian. 

We may note that the defining relations (3.1),. (3.2) and (1.1) of G, A and C, respectively, 
may be expressed  in^ a more useful form in terms of the infinitesimal generators Ik, 

k = 1,2, . . . , n of the matrix representation D as follows 

GI, = -$G AI, = -IiA Cl, = 1;c k =-1,2, ..., n. (3.8) 

It is not difficult to check that these equations also lead to the same relations (2.5), (3.3), 
(3.6) and (3.7), as they must for reasons of consistency. In an actual determination of G, 
C or A associated with a given matrix group (or representation), one must invariably use 
equations (3.8) only. Although there are fl equations in (3.8), generally, not all would be 
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independent because of the commutation relations satisfied by the Ib, thus simplifying the 
problem a little. 

We perform the reality classification of the irreps of SO(3, 1) in the next section, making 
use of the interrelationship of 0, C and A, discussed above. Immediately, we note here 
another useful application of equation (3.4). In the case of unitary irreps for which A = E in 
appropriate bases, the C-matrix may also be chosen to be unitary. To see this, we note that 
when A = E, equation (3.4) implies that C = (YG (where a! is chosen so that CC* = *E). 
However, in general, G = iG and hence it follows that C = i C  accordingly. As such, 
CCi = C& = *CC* = &E. However, every diagonal element of a matrix of type MMt 
is non-negative and, hence, CCt can never equal -E. Thus, CCt = E, i.e. C is unitary. 
Therefore, for a unitary irrep, a unitary symmetric C + CC* = E and a unitary skew- 
symmetric C + CC* = -E. Now, from theorems (la) and (Ib),  we obtain the following 
well known result that a finitedimensional unitary irrep is potentially-real or pseudo-real 
according to 

A V Gopala Rao et a1 

CCt=E e = C  01 CCt=E C=-C. (3.9) 

In passing, we note that the above criterion (3.9) is not applicable to finite-dimensional 
irreps which are not equivalent to unitary irreps (such as the finite-dimensional irreps of 
SO(3,l)). Second, even in the case of finite-dimensional unitary irreps, the above criterion 
(3.9) is not useful in an arbitrary basis, since the C-matrix would not be unitary in all bases 
in view of its transformation law (2.7). Therefore, it is certainly advantageous to also use 
the basis-independent criteria CC" = *E in the reality classification of finite-dimensional 
irreps. 

4. The reality-classification of the irreps of SO(3,l) 

Not all the irreps D(j0, c) of SO(3,l)  preserve a non-degenerate sesquilinear metric. To 
quote the results from the book of Gelfand et a1 (1963) in this context, we conveniently 
break up the set of all the D(j0, c)  irreps of SO(3,l)  as the union of the disjoint subsets 
U,, U,, U3, PU1, PU2, NU, and NU2 which are defined in table 1. Then the results of 
Gelfand et al (1963) are: 

(i) all the irreps contained in U, U U2 U U3 are unitary: 
(ii) all the irreps contained in PUI  U PU2 are pseudo-unitary; and 
(iii) the rest of the irreps which are all contained in NU, U NU2 are non-unitary (in the 

sense that they do not preserve any sesquilinear metric A). 
Further, we may note that UI U U2 is more familiarly known as the principal series and 

U, as the complementary series (of unitary representations) of SO(3.1). 
In an earlier paper (Rao etal 1983), we have shown that evety irrep D(j0, c )  of SO(3.1) 

preserves a non-degenerate bilinear metric G (in the sense of the first of equations (3.8)), 
which can he chosen to be real in the Gelfand-Naimark basis. Therefore, it is obvious that 
every irrep belonging to the union of U,, UZ, U,, PUl and PU2 possesses both A and G 
and, hence, a C also, through equation (3.4). The remaining irreps of SO(3, 1) contained in 
NUl U NUz possess only a G, and as these irreps do not preserve any A, it follows from the 
interrelationships (3.4), (3.6) and (3.7) that these irreps must be essentially complex (called 
type III in table 1). Choosing the arbitrary complex scalar a! in equation (3.4) to be unity 
and using the special properties 

A =A* = A  = A-' G = G* =,+G = +G-' AG = GA (4.1) 



Reality sorting of the representations of SO(3, I ); I 

8 
V 

V 
u - 
E .- 



966 

of A and G valid in the GN-basis (see table I), we obtain the following special properties 
of C in the GN-basis for irreps not belonging to NU1 U NU2: 

A V Gopala Rao et a1 

C =  AG = GA 

C = C" = &e = &C-' 

CC' = CtC = E. 

CC* = C*C = Cz = &E (4.3) 

(4.4) 

Note that in equations (4.1)-(4.4), the plus sign refers to the irreps belonging to U,, U,, 
PU1 and PU2 for which j o  is an integer or zero, and the minus sign refers to the Uz-irreps 
for which j b  is half-odd-integral. The fact that it has been possible to choose the C-matrices 
to be unitary reflects yet another advantage of using the GN-basis. Now, observing that the 
C-matrices are all real and satisfy C2 = &E, we conclude, in the light of the remarks made 
at the end of section 2, that while the irreps belonging to the sub-classes Ul, U,, PUI  and 
PUz are potentially real (called type-I in table I), those belonging to U2 are pseudo-real 
(called t y p d l  in, table 1). The rest of the irreps of SO(3, l), which are all contained in 
NU1 U NU2. are essentially-complex (type-JB). 

We also note in passing that the C-matrices given in table 1 (in the GN-basis) are 
unitary (in fact, real orthogonal) and using them in equation (2.12) yields the matrices T 
which transform the type-I irreps (given in the GN-basis) to their corresponding real forms. 
Using these matrices T, it is also easy to see that the U1 and U3 irreps are real-orthogonal 
whereas the PUI and PU2 irreps are real pseudo-orthogonal. (For the signatures of the 
finite-dimensional real pseudo-orthogonal PU1- irreps, see Rao et a1 (1983).) 
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